Achieving modularity: functional vs volatility decomposition

Enterprise architecture is all about managing complexity. Many EA initiatives tend to focus on managing IT complexity, but there is only so much that can be done there before it becomes obvious that IT complexity is, for the most part, a direct consequence of enterprise complexity. To recap, complexity needs to be managed in order to maintain agility – the ability for an organisation to respond (relatively) quickly and efficiently to changes in markets, regulations or innovation, and to continue to do this over time.

Enterprise complexity can be considered to be the activities performed and resources consumed by the organisation in order to deliver ‘value’, a metric usually measured through the ability to maintain (financial) income in excess of expenses over time.

Breaking down these activities and resources into appropriate partitions that allow holistic thinking and planning to occur is one of the key challenges of enterprise architecture, and there are various techniques to do this.

Top-Down Decomposition

The natural approach to decomposition is to first understand what an organisation does – i.e., what are the (business) functions that it performs. Simply put, a function is a collection of data and decision points that are closely related (e.g., ‘Payments ‘is a function). Functions typically add little value in and of themselves – rather they form part of an end-to-end process that delivers value for a person or legal entity in some context. For example, a payment on its own means nothing: it is usually performed in the context of a specific exchange of value or service.

So a first course of action is to create a taxonomy (or, more accurately, an ontology) to describe the functions performed consistently across an enterprise. Then, various processes, products or services can be described as a composition of those functions.

If we accept (and this is far from accepted everywhere) that EA is focused on information systems complexity, then EA is not responsible for the complexity relating to the existence of processes, products or services. The creation or destruction of these are usually a direct consequence of business decisions. However, EA should be responsible for cataloging these, and ensuring these are incorporated into other enterprise processes (such as, for example, disaster recovery or business continuity processes). And EA should relate these to the functional taxonomy and the information systems architecture.

This can get very complex very quickly due to the sheer number of processes, products and services – including their various variations – most organisations have. So it is important to partition or decompose the complexity into manageable chunks to facilitate meaningful conversations.

Enterprise Equivalence Relations

One way to do this at enterprise level is to group functions into partitions (aka domains) according to synergy or autonomy (as described by Roger Sessions), for all products/services supporting a particular business. This approach is based on the mathematical concept of equivalenceBecause different functions in different contexts may have differing equivalence relationships, functions may appear in multiple partitions. One role of EA is to assess and validate if those functions are actually autonomous or if there is the potential to group apparently duplicate functions into a new partition.

Once partitions are identified, it is possible to apply ‘traditional’ EA thinking to a particular partition, because that partition is of a manageable size. By ‘traditional’ EA, I mean applying Zachman, TOGAF, PEAF, or any of the myriad methodologies/frameworks that are out there. More specifically, at that level, it is possible to establish a meaningful information systems strategy or goal for a particular partition that is directly supporting business agility objectives.

The Fallacy of Functional Decomposition

Once you get down to the level of partition, the utility of functional decomposition when it comes to architecting solutions becomes less useful. The natural tendency for architects would be to build reusable components or services that realise the various functions that comprise the partition. In fact, this may be the wrong thing to do. As Jüval Lowy demonstrates in his excellent webinar, this may result in more complexity, not less (and hence less agility).

When it comes to software architecture, the real reason to modularise your architecture is to manage volatility or uncertainty – and to ensure that volatility in one part of the architecture does not unnecessarily negatively impact another part of the architecture over time. Doing this allows agility to be maintained, so volatile parts of the application can, in fact, change frequently, at low impact to other parts of the application.

When looking at a software architecture through this lens, a quite different set of components/modules/services may become evident than those which may otherwise be obvious when using functional decomposition – the example in the webinar demonstrates this very well. A key argument used by Jüval in his presentation is that (to paraphrase him somewhat) functions are, in general, highly dependent on the context in which they are used, so to split them out into separate services may require making often impossible assumptions about all possible contexts the functions could be invoked in.

In this sense, identified components, modules or services can be considered to be providing options in terms of what is done, or how it is done, within the context of a larger system with parts of variable volatility. (See my earlier post on real options in the context of agility to understand more about options in this context.)

Partitions as Enterprise Architecture

When each partition is considered with respect to its relationship with other partitions, there is a lot of uncertainty around how different partitions will evolve. To allow for maximum flexibility, every partition should assume each other partition is a volatile part of their architecture, and design accordingly for this. This allows each partition to evolve (reasonably) independently with minimum fixed co-ordination points, without compromising the enterprise architecture by having different partitions replicate the behaviours of partitions they depend on.

This then allows:

  • Investment to be expressed in terms of impact to one or more partitions
  • Partitions to establish their own implementation strategies
  • Agile principles to be agreed on a per partition basis
  • Architectural standards to be agreed on a per partition basis
  • Partitions to define internally reusable components relevant to that partition only
  • Partitions to expose partition behaviour to other partitions in an enterprise-consistent way

In generative organisation cultures, partitions do not need to be organisationally aligned. However, in other organisation cultures (pathological or bureaucratic), alignment of enterprise infrastructure functions such as IT or operations (at least) with partitions (domains) may help accelerate the architectural and cultural changes needed – especially if coupled with broader transformations around investment planning, agile adoption and enterprise architecture.

Achieving modularity: functional vs volatility decomposition

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s