The changing role of data lakes

[tl;dr A single data lake, data warehouse or data pipeline to “rule them all” is less useful in hybrid cloud environments, where it can be feasible to query ‘serverless’ cloud-native data sources directly rather than rely on traditional orchestrated batch extracts. Pipeline complexity can be reduced by open extensions to SQL such as the recently announced AWS PartiQL language. Opportunities exist to integrate enterprise human-oriented data governance and meta-data platforms with data pipelines using serverless technologies.]

The need for Data Lakes

A data lake is a centralized repository that allows you to store all your structured and unstructured data at any scale. The data lake concept was created to address a number of issues with traditional data analytics and reporting solutions, specifically:

  • the growing number of applications across an enterprise depending on a given dataset;
  • business and regulatory drivers for governing dataset discovery, quality, creation and/or consumption;
  • the increasing difficulty of IT teams to respond in a timely manner to growing business demand for access to high quality datasets.

The data lake allows data to be made available from its source without making any assumptions about its use. This is particularly critical when the data originates from batch extracts of load-sensitive OLTP databases, most of which are still operating on-premise. Streaming data pipelines, while growing in popularity, are not as common as batch-driven pipelines – although this should change over time as more digital platform architectures become more event-driven in nature.

Data lakes are a key component in data pipelines, a construct (or set of constructs) that provides consolidation of data from multiple sources and makes it available for use. A data pipeline can be orchestrated (via a scheduler) or choreographed (responding to events) – the more jobs a pipeline has to do, the more complex the orchestration or choreography, which has implications for supportability. So reducing the number of jobs a pipeline has to support is key to managing data pipeline complexity.

The Components of a Data Lake

A data lake consists of a few key components:

FeatureDescriptionVirtualTraditional
A storage repositoryDurable, resilient storage of data objects.NoYes
An ingestion mechanismA means to upload content to the repository (no transformation)NoYes
A tagging & metadata mechanismA means to associate metadata with data objects, including user-defined tags.YesYes
A metadata search mechanismA means to search objects in the data lake based on metadata and tags (not content)YesYes
A query engineA means to search the content of objects in the data lakeYesPartially
An access control mechanismA means to ensure that users can only access datasets and parts of data sets that they are entitled to see, and to audit all activity.YesYes

In effect, data lakes have become a kind of data warehouse – the main significant difference being that input sources into data lakes tend to be familiar files – CSVs, Avro, JSON, etc. from multiple sources rather than highly optimized domain-specific schemas – i.e., no assumptions are made about how (or why) the data in the data lake will be consumed. Data lakes also do not concern themselves with scheduling or orchestration.

Datawarehouses, datawarehouses everywhere…

For mature data use cases (i.e., situations where relatively stable, well-known data requirements exist), and where consistent high performance is material to meeting customer needs, data warehouses are still the best solution. A data warehouse stores and manages all of its data locally, and only relies on the data lake as an initial ingestion point.

A data warehouse will transform datasets to the form needed for the specific use cases it supports, and will optimize performance for the consumption of those datasets. Modern data warehouses will use ML/AI techniques to optimize performance rather than relying on human database specialists. But, as this approach is compute intensive, such solutions are more amenable to cloud environments than on-premise environments. Snowflake is an example of this model. As more traditional data warehouses (e.g., Oracle Exadata) move to the cloud, we can expect these to also get ‘smarter’ – however, data gravity will mean such solutions will need to be fundamentally multi-cloud compatible.

For on-premise data warehouses, the tendency is for business lines or functions to create ‘one data warehouse to rule them all’ – mainly because of the traditionally significant storage and compute infrastructure and resources necessary to support data warehouses. Consequently considerable effort is spent on defining and maintaining high performance, appropriately normalized, enterprise data models that can be used in as many enterprise use cases as possible.

In a hybrid/cloud world, multiple data warehouses become more feasible – and in fact, will be inevitable in larger organizations. As more enterprise data becomes available in these dynamically scalable, cloud-based (or HDFS/Hadoop based) data warehouses (such as AWS EMR, AWS Redshift, Snowflake, Google Big Query, Azure SQL Data Warehouse), ‘virtual data warehouses’ avoid the need to move data from its source for query handling, allowing data storage and egress costs to be kept to a minimum, especially if assisted by machine-learning techniques.

Virtual Data Warehouses

Virtual Data warehouse technologies have been around for a while, allowing users to manage and query multiple data sources through a common logical access point. For on-premise solutions, virtual data warehouses have limited use cases, as the cost/effort of scaling out in-house solutions can be prohibitive and not particularly agile in nature, precluding experimental use cases.

On hybrid or cloud environments, virtual data warehouses can leverage the scalability of cloud-native data warehouses, driving queries to the relevant engine for execution, and then leveraging its own scalable infrastructure for executing join queries.

Technologies like Dremio reflect the state of the art in cloud-based data warehouses, which push down queries to the source system where possible, but can process them in-memory directly from a data lake or other source if not.

However, there is one thing that all data warehouses have in common: they leverage SQL and (implicitly) a relational view of the data. Standard ANSI SQL queries are generally supported by all data warehouses, but may mean that some data cannot be queried if it is not in tabular form amenable to SQL processing.

Extending SQL with PartiQL

Enter PartiQL, an open-source project sponsored by Amazon to drive extensions to standard SQL that can cope with non-relational data types, including structured, unstructured, nested, and schemaless (NoSQL, Document).

Historically, all data ingested into a data lake had to be transformed into a format that could be queried by SQL-like commands or processed by typical data warehouse bulk-upload tools. This adds complexity to data pipelines (i.e., more jobs), and may also force premature schema design (i.e., forcing the design of an optimal schema before all critical use cases are fully understood).

PartiQL potentially allows tools such as Snowflake, Dremio (as well as the tools AWS uses internally) to query data using SQL-like syntax, but to also include non-relational data in those queries so they can avoid those separate transformation steps, aiding pipeline complexity reduction.

PartiQL claims to be fully ANSI-compliant, but extended in specific ways to support alternate data formats. While not an official ISO/ANSI standard, it may have the ability to become a de-facto standard – especially as the language has already been used in anger with success within AWS. This will provide a skill path for relational data warehouse experts to become proficient in leveraging modern data pipelines without committing to one specific vendor’s technology.

Technologies like PartiQL will make it much easier to include event-sourced streams into a data pipeline, as events are defined as nested or other non-relational structures. As more data pipelines become event driven rather than batch-driven, having a standard like PartiQL will be key. (It will be interesting to see if Confluent’s KSQL and PartiQL will converge to a single event-stream query standard.)

As PartiQL has only just been released, it’s too soon to tell how the big data ecosystem or ISO/ANSI will respond. Expect more on this topic in the future. For now, virtual data warehouses must rely on their proprietary SQL extensions.

Non-SQL Data Processing

Considerable investment is being made by third party vendors on advanced technology focused on making distributed, scalable processing of SQL (or SQL-like) queries fast and reliable with little or no human tuning required. As such, it is wise to pick a vendor demonstrating a clear strategy in this space, and continuing to invest in SQL as the lingua-franca of transformation logic.

However, for use cases for which SQL is not appropriate, distributed computing platforms like Spark are still needed. The expectation here is that such platforms will ingest data from a data lake, and output results into a data lake. In some cases, the distributed computing platform offers its own storage (e.g., HDFS), but increasingly it is more appropriate to question whether data needs to reside permanently in a HDFS cluster rather than in a data lake. For example, Amazon’s EMR service allows Hadoop clusters to be created ephemerally, and to consume their initial dataset from AWS S3 repositories or other data sources,

Enforcing Enterprise Data Collaboration and Governance

Note that all data warehouse solutions (virtual or not) must support some form of meta-data tagging and management used by their SQL query engines – otherwise they cannot act as a virtual database source (generally an ODBC end-point that applications can connect directly to). This tagging can be automated if sources included meta-data (e.g., field headers, Avro schema definitions, etc) , but can be enhanced by human tagging, which is increasingly augmented by machine-learning to help identify, for example, where data may be sensitive, etc.

But data governance needs extend beyond the needs of the virtual data warehouse query engines, and this is where there are still gaps to be filled in the current enterprise data management tools.

Tools from vendors like Alation, Waterline, Informatica, Collibra etc were created to augment people’s ability to properly tag content in the data-lake with meaningful information to make it discoverable and governable. Consistent tagging in principle allows tag-based governance rules to be defined to automatically enforce data governance policies in data consumers. This data, coupled with schema information which can be derived directly from data-sources, is all the information needed to allow users (or developers) to source the data they need in a secure, compliant way.

But meta-data for data governance has humans as the primary user (e.g. CDOs, business/data analysts, process owners, etc) – or, as Alation describes it – meta-data for human collaboration.

Currently, there is no accepted standards for ensuring the consistency of ‘meta-data for human collaboration’ with ‘meta-data for query execution’.

Ideally, the human-oriented tools would generate standard events that tools in the data pipeline could pick up and act on (via, for example, something like AWS EventBridge), thereby avoiding the need for data governance personnel to oversee multiple data pipelines directly…

Summary

With the advent of cloud-based managed compute and data storage services, a multi-data warehouse and pipeline strategy is viable and may even be desirable, potentially involving multiple data lakes.

Solutions like PartiQL have the potential to eliminate many transformation job phases and greatly simplify data pipeline complexity in a standardized way, leveraging existing SQL skills rather than requiring new skills.

To ensure consistent governance across multiple data pipelines, a serverless event-based approach to connecting human data governance solutions with cloud-native data pipeline solutions may be the way forward – for example, using AWS EventBridge to action events originating from SaaS-based data governance services with data pipelines.

The changing role of data lakes

Achieving modularity: functional vs volatility decomposition

Enterprise architecture is all about managing complexity. Many EA initiatives tend to focus on managing IT complexity, but there is only so much that can be done there before it becomes obvious that IT complexity is, for the most part, a direct consequence of enterprise complexity. To recap, complexity needs to be managed in order to maintain agility – the ability for an organisation to respond (relatively) quickly and efficiently to changes in markets, regulations or innovation, and to continue to do this over time.

Enterprise complexity can be considered to be the activities performed and resources consumed by the organisation in order to deliver ‘value’, a metric usually measured through the ability to maintain (financial) income in excess of expenses over time.

Breaking down these activities and resources into appropriate partitions that allow holistic thinking and planning to occur is one of the key challenges of enterprise architecture, and there are various techniques to do this.

Top-Down Decomposition

The natural approach to decomposition is to first understand what an organisation does – i.e., what are the (business) functions that it performs. Simply put, a function is a collection of data and decision points that are closely related (e.g., ‘Payments ‘is a function). Functions typically add little value in and of themselves – rather they form part of an end-to-end process that delivers value for a person or legal entity in some context. For example, a payment on its own means nothing: it is usually performed in the context of a specific exchange of value or service.

So a first course of action is to create a taxonomy (or, more accurately, an ontology) to describe the functions performed consistently across an enterprise. Then, various processes, products or services can be described as a composition of those functions.

If we accept (and this is far from accepted everywhere) that EA is focused on information systems complexity, then EA is not responsible for the complexity relating to the existence of processes, products or services. The creation or destruction of these are usually a direct consequence of business decisions. However, EA should be responsible for cataloging these, and ensuring these are incorporated into other enterprise processes (such as, for example, disaster recovery or business continuity processes). And EA should relate these to the functional taxonomy and the information systems architecture.

This can get very complex very quickly due to the sheer number of processes, products and services – including their various variations – most organisations have. So it is important to partition or decompose the complexity into manageable chunks to facilitate meaningful conversations.

Enterprise Equivalence Relations

One way to do this at enterprise level is to group functions into partitions (aka domains) according to synergy or autonomy (as described by Roger Sessions), for all products/services supporting a particular business. This approach is based on the mathematical concept of equivalenceBecause different functions in different contexts may have differing equivalence relationships, functions may appear in multiple partitions. One role of EA is to assess and validate if those functions are actually autonomous or if there is the potential to group apparently duplicate functions into a new partition.

Once partitions are identified, it is possible to apply ‘traditional’ EA thinking to a particular partition, because that partition is of a manageable size. By ‘traditional’ EA, I mean applying Zachman, TOGAF, PEAF, or any of the myriad methodologies/frameworks that are out there. More specifically, at that level, it is possible to establish a meaningful information systems strategy or goal for a particular partition that is directly supporting business agility objectives.

The Fallacy of Functional Decomposition

Once you get down to the level of partition, the utility of functional decomposition when it comes to architecting solutions becomes less useful. The natural tendency for architects would be to build reusable components or services that realise the various functions that comprise the partition. In fact, this may be the wrong thing to do. As Jüval Lowy demonstrates in his excellent webinar, this may result in more complexity, not less (and hence less agility).

When it comes to software architecture, the real reason to modularise your architecture is to manage volatility or uncertainty – and to ensure that volatility in one part of the architecture does not unnecessarily negatively impact another part of the architecture over time. Doing this allows agility to be maintained, so volatile parts of the application can, in fact, change frequently, at low impact to other parts of the application.

When looking at a software architecture through this lens, a quite different set of components/modules/services may become evident than those which may otherwise be obvious when using functional decomposition – the example in the webinar demonstrates this very well. A key argument used by Jüval in his presentation is that (to paraphrase him somewhat) functions are, in general, highly dependent on the context in which they are used, so to split them out into separate services may require making often impossible assumptions about all possible contexts the functions could be invoked in.

In this sense, identified components, modules or services can be considered to be providing options in terms of what is done, or how it is done, within the context of a larger system with parts of variable volatility. (See my earlier post on real options in the context of agility to understand more about options in this context.)

Partitions as Enterprise Architecture

When each partition is considered with respect to its relationship with other partitions, there is a lot of uncertainty around how different partitions will evolve. To allow for maximum flexibility, every partition should assume each other partition is a volatile part of their architecture, and design accordingly for this. This allows each partition to evolve (reasonably) independently with minimum fixed co-ordination points, without compromising the enterprise architecture by having different partitions replicate the behaviours of partitions they depend on.

This then allows:

  • Investment to be expressed in terms of impact to one or more partitions
  • Partitions to establish their own implementation strategies
  • Agile principles to be agreed on a per partition basis
  • Architectural standards to be agreed on a per partition basis
  • Partitions to define internally reusable components relevant to that partition only
  • Partitions to expose partition behaviour to other partitions in an enterprise-consistent way

In generative organisation cultures, partitions do not need to be organisationally aligned. However, in other organisation cultures (pathological or bureaucratic), alignment of enterprise infrastructure functions such as IT or operations (at least) with partitions (domains) may help accelerate the architectural and cultural changes needed – especially if coupled with broader transformations around investment planning, agile adoption and enterprise architecture.

Achieving modularity: functional vs volatility decomposition

Achieving Agile at Scale

[tl;dr Scaling agile at the enterprise level will need rethinking how portfolio management and enterprise architecture are done to ensure success.]

Agility,as a concept, is gaining increasing attention within large organisations. The idea that business functions – and in particular IT – can respond quickly and iteratively to business needs is an appealing one.

The reasons why agility is getting attention are easy to spot: larger firms are getting more and more obviously unagile – i.e., the ability of business functions to respond to business needs in a timely and sustainable manner is getting progressively worse, even as a rapidly evolving competitive and technology-led commercial environment is demanding more agility.

Couple that with the heavy cost of failing to meet ever increasing regulatory compliance obligations, and ‘agile’ seems a very good idea indeed.

Agile is a great idea, but when implemented at scale (in large enterprise organisations), it can actually reduce enterprise agility, rather than increase it, unless great care is taken.

This is partly because Agile’s origins come from developing web applications: in these scenarios, there is usually a clear customer, a clear goal (to the extent that the team exists in the first place), and relatively tight timelines that favour short or non-existent analysis/design phases. Agile is perfect for these scenarios.

Let’s call this scenario ‘local agile’. It is quite easy to see a situation where every team, in response to the question, ‘are you doing agile?’, for teams to say ‘Yes, we do!’. So if every team is doing ‘local agile’, does that mean your organisation is now ‘agile’?

The answer is No. Getting every team to adopt agile practices is a necessary but insufficient step towards achieving enterprise agility. In particular, two key factors needs to be addressed before true a firm can be said to be ‘agile’ at the enterprise level. These are:

  1. The process by which teams are created and funded, and
  2. Enterprise awareness

Creating & Funding (Agile) Teams

Historically, teams are usually created as a result of projects being initiated: the project passes investment justification criteria, the project is initiated and a team is put in place, led by the project manager. Also, this process was owned entirely by the IT organisation, irrespective of which other organisations were stakeholders in the project.

At this point, IT’s main consideration is, will the project be delivered on time and on budget? The business sponsor’s main consideration is, will it give us what we need when we need it? And the enterprise’s consideration (which is often ignored) is who is accountable for ensuring that the IT implementation delivers value to the enterprise. (In this sense, the ‘enterprise’ could be either a major business line with full P&L responsibility for all activities performed in support of their business, or the whole organisation, including shared enterprise functions).

Delivering ‘value’ is principally about ensuring that  on-going or operational processes, roles and responsibilities are adjusted to maximise the benefits of a new technology implementation – which could include organisational change, marketing, customer engagement, etc.

However, delivering ‘value’ is not always correlated to one IT implementation; value can be derived from leveraging multiple IT capabilities in concert. Given the complexity of large organisations, it is often neither desirable or feasible to have a single IT partner be responsible for all the IT elements that collectively deliver business value.

On this basis, it is evident that how businesses plan and structure their portfolio of IT investments needs to change dramatically. In particular,

  1. The business value agenda is outcome focused and explicit about which IT capabilities are required to enable it, and
  2. IT investment is focused around the capability investment lifecycle that IT is responsible for stewarding.

In particular ‘capabilities’ (or IT products or services) have a lifecycle: this affects the investment and expectations around those capabilities. And some capabilities need to be more ‘agile’ than others – some must be agile to be useful, whereas for others, stability may be the over-riding priority, and therefore their lack of agility must be made explicit – so agile teams can plan around that.

Enterprise Awareness

‘Locally’ agile teams are a step in the right direction – particularly if the business stakeholders all agree they are seeing the value from that agility. But often this comes at the expense of enterprise awareness. In short, agility in the strict business sense can often only deliver results by ignoring some stakeholders interests. So ‘locally’ agile teams may feel they must minimise their interactions with other teams – particularly if those teams are not themselves agile.

If we assume that teams have been created through a process as described in the previous section, it becomes more obvious where the team sits in relation to its obligations to other teams. Teams can then make appropriate compromises to their architecture, planning and agile SDLC to allow for those obligations.

If the team was created through ‘traditional’ planning processes, then it becomes a lot harder to figure out what ‘enterprise awareness’ is appropriate (except perhaps or IT-imposed standards or gates, which only contributes indirectly to business value).

Most public agile success stories describe very well how they achieved success up to  – but not including – the point at which architecture becomes an issue. Architecture, in this sense, refers to either parts of the solution architecture which can no longer be delivered via one or two members of an agile team, or those parts of the business value chain that cannot be entirely delivered via the agile team on its own.

However, there are success stores (e.g., Spotify) that show how ‘enterprise awareness’ can be achieved without limiting agility. For many organisations, transitioning from existing organisation structures to new ‘agile-ready’ structures will be a major challenge, and far harder than simply having teams ‘adopt agile’.

Conclusions

With the increased attention on Agile, there is fortunately increased attention on scaling agile. Methodologies like Disciplined Agile Development (DaD) and LargE Scale Scrum (LeSS), coupled with portfolio concepts like Scaled Agile Framework (SAFe) propose ways in which Agile can scale beyond the team and up to enterprise level, without losing the key benefits of the agile approach.

All scaled agile methodologies call for changes in how Portfolio Management and Enterprise Architecture are typically done within an organisation, as doing these activities right are key to the success of adopting Agile at scale.

Achieving Agile at Scale

Strategic Theme #2/5: Enterprise Modularity

[tl;dr Enterprise modularity is the state-of-the-art technologies and techniques which enable agile, cost effective enterprise-scale integration and reuse of capabilities and services. Standards for these are slowly gaining traction in the enterprise.]

Enterprise Modularity is, in essence, Service Oriented Architecture but ‘all the way down’; it has evolved a lot over the last 15-20 years since SOA was first promoted as a concept.

Specifically, SOA historically has been focused on ‘services’ – or, more explicitly, end-points, the contracts they expose, and service discovery. It has been less concerned with the architectures of the systems behind the end-points, which seems logically correct but has practical implications which has limited the widespread adoption of SOA solutions.

SOA is a great idea that has often suffered from epic failures when implemented as part of major transformation initiatives (although less ambitious implementations may have met with more success, but limited to specific domains).

The challenge has been the disconnect between what developers build, what users/customers need, and what the enterprise desires –  not just for the duration of a programme, but over time.

Enterprise modularity needs several factors to be in place before it can succeed at scale. Namely:

  • An enterprise architecture (business context) linked to strategy
  • A focus on data governance
  • Agile cross-disciplinary/cross-team planning and delivery
  • Integration technologies and tools consistent with development practices

Modularity standards and abstractions like OSGi, Resource Oriented Computing and RESTful computing enable the development of loosely coupled, cohesive modules potentially deployable as stand-alone services and which can be orchestrated in innovative ways using   many technologies – especially when linked with canonical enterprise data standards.

The upshot of all this is that traditional ESBs are transforming..technologies like Red Hat Fuse ESB and open-source solutions like Apache ServiceMix provide powerful building blocks that allow ESBs to become first-class applications rather than simply integration hubs. (MuleSoft has not, to my knowledge, adopted an open modularity standard such as OSGi, so I believe it is not appropriate to use as the basis for a general application architecture.)

This approach allows for the eventual construction of ‘domain applications’ which, more than being an integration hub, actually hosts the applications (or, more accurately, application components) in ways that make dependencies explicit.

Vendors such as CA Layer7, Apigee and AxWay are prioritising API management over more traditional, heavy-weight ESB functions – essentially, anyone can build an API internal to their application architecture, but once you want to expose it beyond the application itself, then an API management tool will be required. These can be implemented top-down once the bottom-up API architecture has been developed and validated. Enterprise or integration architecture teams should be driving the adoption and implementation of API management tools, as these (done well) can be non-intrusive with respect to how application development is done, provided application developers take a micro-services led approach to application architecture and design. The concept of ‘dumb pipes’ and ‘smart endpoints are key here, to avoid putting inappropriate complexity in the API management layer or in the (traditional) ESB.

Microservices is a complex topic, as this post describes. But modules (along the lines defined by OSGi) are a great stepping stone, as they embrace microservice thinking without necessarily introducing distributed systems complexity. Innovative technologies like Paremus Service Fabric  building on OSGi standards, help make the transition from monolithic modular architectures to a (distributed) microservice architecture as painless as can be reasonably expected, and can be a very effective way to manage evolution from monolithic to distributed (agile, microservice-based) architectures.

Other solutions, such as Cloud Foundry, offer a means of taking much of the complexity out of building green-field microservices solutions by standardising many of the platform components – however, Cloud Foundry, unlike OSGi, is not a formal open standard, and so carries risks. (It may become a de-facto standard, however, if enough PaaS providers use it as the basis for their offerings.)

The decisions as to which ‘PaaS’ solutions to build/adopt enterprise-wide will be a key consideration for enterprise CTOs in the coming years. It is vital that such decisions are made such that the chosen PaaS solution(s) will directly support enterprise modularity (integration) goals linked to development standards and practices.

For 2015, it will be interesting to see how nascent enterprise standards such as described above evolve in tandem with IaaS and PaaS innovations. Any strategic choices made in these domains must consider the cost/impact of changing those choices: defining architectures that are too heavily dependent on a specific PaaS or IaaS solution limits optionality and is contrary to the principles of (enterprise) modularity.

This suggests that Enterprise modularity standards which are agnostic to specific platform implementation choices must be put in place, and different parts of the enterprise can then choose implementations appropriate for their needs. Hence open standards and abstractions must dominate the conversation rather than specific products or solutions.

Strategic Theme #2/5: Enterprise Modularity

The Learning CTO’s Strategic themes for 2015

Like most folks, I cannot predict the future. I can only relate the themes that most interest me. On that basis, here is what is occupying my mind as we go into 2015.

The Lean Enterprise The cultural and process transformations necessary to innovate and maintain agility in large enterprises – in technology, financial management, and risk, governance and compliance. Includes using real-option theory to manage risk.
Enterprise Modularity The state-of-the-art technologies and techniques which enable agile, cost effective enterprise-scale integration and reuse of capabilities and services. Or SOA Mark II.
Continuous Delivery The state-of-the-art technologies and techniques which brings together agile software delivery with operational considerations. Or DevOps Mark I.
Systems Theory & Systems Thinking The ability to look at the whole as well as the parts of any dynamic system, and understand the consequences/impacts of decisions to the whole or those parts.
Machine Learning Using business intelligence and advanced data semantics to dynamically improve automated or automatable processes.

[Blockchain technologies are another key strategic theme which are covered in a separate blog, dappsinfintech.com.]

Why these particular topics?

Specifically, over the next few years, large organisations need to be able to

  1. Out-innovate smaller firms in their field of expertise, and
  2. Embrace and leverage external innovative solutions and services that serve to enhance a firm’s core product offerings.

And firms need to be able to do this while keeping a lid on overall costs, which means managing complexity (or ‘cleaning up’ as you go along, also known as keeping technical debt under control).

It is also interesting to note that for many startups, these themes are generally not an explicit concern, as they tend to be ‘obvious’ and therefore do not need additional management action to address them. However, small firms may fail to scale successfully if they do not explicitly recognise where they are doing these already, and so ensure they maintain focus on these capabilities as they grow.

Also, for many startups, their success may be predicated on larger organisations getting on top of these themes, as otherwise the startups may struggle to get large firms to adopt their innovations on a sustainable basis.

The next few blog posts will explain these themes in a bit more detail, with relevant references.

The Learning CTO’s Strategic themes for 2015

THE FUTURE OF ESBs (AND SOA)

There are some interesting changes happening in technology, which will likely fundamentally change how IT approaches technology like Enterprise Service Buses (ESBs) and concepts like Service Oriented Architecture (SOA).

Specifically, those changes are:

  • An increased focus on data governance, and
  • Microservice technology

Let’s take each in turn, and conclude by suggesting how this will impact how ESBs and SOA will likely evolve.

Data Governance

Historically, IT has an inconsistent record with respect to data governance. For sure, each application often had dedicated data modellers or designers, but its data architecture tended to be very inward focused. Integration initiatives tended to focus on specific projects with specific requirements, and data was governed only to the extent it enabled inidividual project objectives to be achieved.

Sporadic attempts at creating standard message structures and dictionaries crumbled in the face of meeting tight deadlines for critical business deliverables.

ESBs, except in the most stable, controlled environments, failed to deliver the anticipated business benefits because heavy-weight ESBs turned out to be at least as un-agile as the applications they intended to integrate, and since the requirements on the bus evolve continually, application teams tended to favour reliable (or at least predictable) point-to-point solutions over enterprise solutions.

But there are three new drivers for improving data governance across the enterprise, and not just at the application level. These are:

  • Security/Privacy
  • Digital Transformation
  • Regulatory Control

The security/privacy agenda is the most visible, as organisations are extremely exposed to reputational risk if there are security breaches. An organisation needs to know what data it has where, and who has access to it, in order to ensure it can protect it.

Digital transformation means that every process is a digital-first process (or ‘straight-through-processing’ in the parlance of financial services). Human intervention should only be required to handle exceptions. And it means that the capabilities of the entire enterprise need to be brought to bear in order to provide a consistent connected customer experience.

For regulated industries, government regulators are now insisting that firms govern their data throughout that data’s entire lifecycle, not only from a security/privacy compliance perspective, but also from the perspective of being able to properly aggregate and report on regulated data sets.

The same governance principles, policies, processes and standards within an enterprise should underpin all three drivers – hence the increasing focus on establishing the role of ‘chief data officeer’ within organisations, and resourcing that role to materially improve how firms govern their data.

Microservice Technology

Microservice technology is an evolution of modularity in monolithic application design that started with procedures, and evolved through to object-oriented programming, and then to packages/modules (JARs and DLLs etc).

Along the way were attempts to extend the metaphor to distributed systems – e.g., RPC, CORBA, SOA/SOAP, and most recently RESTful APIs – in addition to completely different ‘message-driven’ approachs such as that advocated by the Reactive Development community.

Unfortunately, until fairly recently, most applications behind distributed end-points were architecturally monolithic – i.e., complex applications that needed to go through significant build-test-deploy processes for even minor changes, making it very difficult to adapt these applications in a timely manner to external change factors, such as integrations.

The microservices movement is a reaction to this, where the goal is to be able to deploy microservices as often as needed, without the risk of breaking the entire application (or of having a simple rollback process if it does break). In addition, microservice architectures are inherently amenable to horizontal scaling, a key factor behind its use within internet-scale technology companies.

So, microservices are an architectural style that favours agile, distributed deployment.

As such, one benefit behind the use of microservices is that it allows teams, or individuals within teams, to take responsibility for all aspects of the microservice over its lifetime. In particular, where microservices are exposed to external teams, there is an implied commitment from the team to continue to support those external teams throughout the life of the microservice.

A key aspect of microservices is that they are fairly lightweight: the developer is in control. There is no need for specific heavyweight infrastructure – in fact, microservices favor anti-fragile architectures, with abundant low-cost infrastructure.

Open standards such as OSGi and abstractions such as Resource Oriented Computing allow microservices to participate in a governed, developer-driven context. And in the default (simplest) case, microservices can be exposed using plain-old RESTful standards, which every web application developer is at least somewhat familiar with.

Data Governance + Microservices = Enterprise Building Blocks

Combining the benefits of both data governance and microservices means that firms for the first time can start buiding up a real catalog of enterprise-re-usable building blocks – but without the need for a traditional ESB, or traditional ESB governance. Microservices are developed in response to developer needs (perhaps influenced by Data Governance standards), and Data Standards can be used to describe, in an enterprise context, what those (exposed) microservices do.

Because microservices technologies allow ‘smart endpoints’ to be easily created and integrated into an application architecture, the need for a central ‘bus’ is eliminated. Developers can create many endpoints with limited complexity overhead, and over time can converge these into a small number of common services.

With respect to the Service Registry function provided by ESBs, the new breed of API Management tools may be sufficient to provide any lookup/resolution capabilities required (above and beyond those provided by the microservice architecture itself). API Management tools also keep complexity out of API development by taking care of monitoring, analytics, authentication, protocol conversion and basic throttling capabilities – for those APIs that require those capabilities.

Culturally, however, microservices requires a collaborative approach to software development and evolution, with minimum top-down command-and-control intervention. Data governance, on the other hand, is necessarily driven top-down. So there is a risk of a cultural conflict between top-down data governance and bottom-up microservice delivery: both sides need to be sensitive to the needs of the other side, and be prepared to make compromises occasionally.

In conclusion, the ESB is dead…but long live (m)SOA.

THE FUTURE OF ESBs (AND SOA)