Decentralized Applications in the Cloud

[tl;dr Are decentralized applications implemented using cloud provider managed services really decentralized, and are they ready for prime time usage? Proof-of-work is not cloud-friendly, and proof-of-stake still immature. Open source blockchain solutions provide mechanisms to ensure secure operational independence of organizations on the same network, even if they are using the same cloud provider. Integrating decentralized applications with cloud-native applications may help build highly integrated platform eco-systems.]

A “decentralized application” (or ‘dapp’) is a technology solution to a business process that spans a number of independent, geographically distributed and possibly untrustworthy, organizations. A list of dapps can be found here, but most current dapps are somewhat frivolous in nature, somewhat similar to websites appearing on the WWW in the early nineties after Mosaic was released.

A decentralized application relies on cryptographic techniques to ensure trust (i.e., immutability of history, validity of transactions), and uses peer-to-peer communication mechanisms to avoid a centralized bottleneck.

Today, in the financial world in particular, regulatory-mandated organizations such as clearing houses, SEF‘s and the SWIFT financial network broker trust between independent organizations. These are centralized services where trust is assumed (by rule of law). Other trust brokers, apart from government, include industry consortia, community groups, non-governmental organizations, etc. While trust brokers will always exist (in non-anarchic societies!), the way in which they participate in enterprise value chains will likely change significantly in the coming years, as cloud- and blockchain-based technologies enable processes to extend beyond the traditional enterprise boundaries.

The most famous decentralized application is BitCoin, based on blockchain technology, which assumes zero trust between individual participants. Many decentralized applications rely on blockchain technology to provide trust, or at least consensus. The concept of ‘blocks’ in a blockchain is a practical optimization for truly decentralized applications; applications which merely require immutability and verifiability of transactions do not require blocks, but will then have centrally managed state. (AWS’s new QLDB service is an example of this.)

The concept of ‘blockchain-as-a-service’ (BaaS) has been around for a while – as evidenced by the number of companies operating in this space; these are principally tools to enable the building of decentralized applications and aim to isolate businesses from the complexities of blockchain development.

Recently, the major cloud service providers have entered the ‘BaaS’ space – AWS and Azure offer BaaS solutions, currently leveraging open-source offerings from HyperLedger and Ethereum – neither of which rely on Bitcoin technology, although both are blockchain-based. Other blockchain solutions, such as R3’s Corda, have yet to be added as foundational cloud provider services, but Corda nodes can be deployed on any IaaS cloud provider (e.g., AWS and Azure, and GCP, etc.)

Implications of Blockchain on the cloud

There are some significant implications with respect to the use of blockchain technology in the cloud. The first is related to how trust is achieved effectively on cloud-based infrastructure, the second to how operationally decentralized applications built on cloud infrastructure really are.

Achieving Trust

In BitCoin, trust is achieved through ‘proof-of-work’ – i.e., a untrusted node has to consume considerable resources (mostly power) to prove they have correctly validated a block of transactions. Multiple nodes compete for this validation, and there is a reward for the ‘winner’, which a majority of nodes must accept as the winner. The basic idea is that it would be extremely expensive in terms of resource utilization and alliance building to be able to successfully validate ‘fake’ transactions.

The problem for cloud providers is that this is a very inefficient use of cloud resources. ‘Blockchain-as-a-service’ for proof-of-work-based protocols (i.e., Bitcoin and its derivatives) is essentially provided by mining pools. These are entities (people, organizations) who have specialised hardware who come together to solve Bitcoin proof-of-work puzzles, and share the proceeds as a group. This is not the business the major cloud providers are in.

Therefore, proof-of-work is essentially not feasible to provide on public cloud. Instead, other variants, such as ‘proof-of-stake‘, or permissioned-ledgers are necessary. Technically, this precludes ‘Ethereum-as-a-service’ from being offered by cloud providers, as Ethereum still relies on proof-of-work, but Ethereum’s intention is to (eventually) be proof-of-stake-based.

Unfortunately, these non proof-of-work-based alternatives are still relatively immature and unproven. In particular, there is a potential issue around combinatorial complexity management in permissioned ledgers, if each organization has to define and manage its own ‘universe’ of participants and the data they have access to. (Note – it’s not seen as an issue for public ledgers, as all participants have equal access to content on the network, so combinatorial complexity does not increase with number of participants. Also, the content of public ledgers is transparent to everyone,)

Decentralized Operations

If all application instances in a decentralized blockchain service are running on the same cloud, how ‘decentralized’ is that really – from an operational perspective?

Clearly, the decentralized blockchain service will fail if the cloud provider itself suffers an outright failure (i.e., all regions simultaneously unavailable). This could bring entire industries or supply chains to their knees..but it is also (we hope) very unlikely, given the focus that cloud providers rightly have on resilience. We are putting a lot of trust into the cloud providers to do the right thing..although at some point, to allay systemic risk concerns, this may perhaps need to be enshrined in law (in much the same way utilities have legal obligations for service provision).

Managed solutions like AWS Managed Blockchain currently assume the blockchain service is entirely hosted in the providers cloud, and that every organization with nodes on the network have their own cloud accounts in which they operate infrastructure they control.

In this architecture, every organization wholly controls its own infrastructure (in its own AWS account), the blockchain software running on that infrastructure, and the ledger data stored within it.

The blockchain service software itself (in the AWS case, Hyperledger Fabric) provides mechanisms to ensure new (ledger-updating) code is only deployed to the blockchain network when a quorum of participants have cryptographically signed the new code. This provides guarantees that ‘rogue’ code running on another member’s node cannot force an invalid consensus.

In this way, individual organisations retain control over the operation of their part of the blockchain network, while decoupling them sufficiently from other organizations and how they operate their parts of the network. This achieves operational decentralization, the equivalent of each organization running their nodes in their own data centers.

Achieving Decentralized Goals

A decentralized application is intended to remove process bottlenecks, or eliminate the ‘middle-man’ by ensuring multiple independent parties have the same reliable, consistent view of a shared dataset that cannot be tampered with, without relying on a single central 3rd party.

We have established that while the cloud service provider centralizes infrastructure and shared blockchain services, control over data (ledger state) and applications is truly decentralized. As long as the cloud provider itself is available, individual participants in the network can fail or be unavailable without impacting overall service availability.

Managing State in Decentralised Ledgers

A key challenge in any transactional system is transactionally recording an event as having occurred, as well as the impact of the event – e.g., recording that Bob requested to transfer $X to Alice’s account from his account, as well as updating Bob’s account balance and Alice’s account balance with the adjusted balance. But state is application specific, and many applications only need to know the event happened, and prefer to manage their own view of state – for example, analytics, machine-learning, AI, etc have very different states to manage for the same event.

For speed and integrity, some state may need to be managed in the decentralized ledger, but this should ideally be kept to a minimum. Instead, the event log is key, and most applications will likely need to maintain their own dynamic view of state which can be queried according to various application needs.

While blockchain solutions like Hyperledger offer some means to manage stage (e.g., using CouchDB to capture and query complex JSON objects), treating a distributed ledger like a traditional operational datastore is likely to cause problems down the line.

The Hyperledger Fabric is addressing this need by introducing the concept of the EventHub which in principle would allow organizations to build ‘listeners’ to act on committed events. Perhaps in the future this may be integrated with AWS EventBridge allowing events committed to the decentralized ledger to be integrated into more traditional (non-decentralized) application workflows, enabling a very powerful ecosystem of decentralized and cloud-native applications across multiple organizations to work together in a trusted manner.

Summary

As non proof-of-work blockchain solutions mature, decentralized business applications enabled via public cloud will likely be a major area of growth, as industries and special interest groups collaborate to solve common problems while retaining operational independence.

The nascent services provided by AWS and Azure are not yet ready for mission-critical large-scale use, but look like to be an excellent way for organizations to experiment with decentralized applications and re-imaging many legacy processes that currently rely on centralized intermediaries.

Finally, integration of decentralized applications with enterprise applications is likely to be significant area of growth in the future.

Decentralized Applications in the Cloud

The cloudy future of data management & governance

[tl;dr The cloud enables novel ways of handling an expected explosion in data store types and instances, allowing stakeholders to know exactly what data is where at all times without human process dependencies.]

Data management & governance is a big and growing concerns for more and more organizations of all sizes. Effective data management is critical for compliance, resilience, and innovation.

Data governance is necessary to know what data you have, when you got it, where it came from, where it is being used, and whether it is of good quality or not.

While the field is relatively mature, the rise of cloud-based services and service-enabled infrastructure will, I believe, fundamentally change the nature of how data is managed in the future and enable greater agility if leveraged effectively.

Data Management Meta-Data

Data and application architects are concerned about ensuring that applications use the most appropriate data storage solution for the problem being solved. To better manage cost and complexity, firms tend to converge on a handful of data management standards (such as Oracle or SQL Server for databases; NFS or NTFS for filesystems; Netezza, Terradata for data warehousing, Hadoop/HDFS for data processing, etc). Expertise is concentrated around central teams that manage provisioning, deployments, and operations for each platform. This introduces dependencies that project teams must plan around. This also requires forward planning and long-term commitment – so not particularly agile.

Keeping up with data storage technology is a challenge – technologies like key/value stores, graph databases, columnar databases, object stores, and document databases exist as these represent varying datasets in a more natural way for applications to consume, reducing or eliminating the ‘impedance mismatch‘ between how applications view state and how that state is stored.

In particular, may datastore technologies are used to scaling up rather than out; i.e., the only way to make them perform faster is to add more CPU/memory, or faster IO hardware. While this keeps applications simpler, it require significant forward planning and longer-term commitments to scale up, and is out of the control of application development teams. Cloud-based services can typically handle scale-out transparently, although applications may need to be aware of the data dimensions across which scale out happens (e.g., sharding by primary key, etc).

Fulfilling provisioning requests for a new datastore on-premise is mostly ticket driven, but fulfillment is still mostly by humans and not by software within enterprises – which means an “infrastructure-as-code” approach is not feasible.

Data Store Manageability vs Application Complexity

Most firms decide that it is better to simplify the data landscape such that fewer datastore solutions are available, but to resource those solutions so that they are properly supported to handle business critical production workloads with maximum efficiency.

The trade-off is in the applications themselves, where the data storage solutions available end up driving the application architecture, rather than the application architecture (i.e., requirements) dictating the most appropriate data store solution, which would result in the lowest impedance mismatch.

A typical example of an impedance mismatch are object-oriented applications (written in, say C++ or Java) which use relational databases. Here, object/relational mapping technologies such as Hibernate or Gigaspaces are used to map the application view of the data (which likes to view data as in-memory objects) to the relational view. These middle layers, while useful for naturally relational data, can be overly expensive to maintain and operate if what your application really needs is a more appropriate type of datastore (e.g., graph).

This mismatch gets exacerbated in a microservices environment where each microservice is responsible for its own persistence, and individual microservices are written in the language most appropriate for the problem domain. Typical imperative, object-oriented languages implementing transactional systems will lean heavily towards relational databases and ORMs, whereas applications dealing with multi-media, graphs, very-large objects, or simple key/value pairs will not benefit from this architecture.

The rise of event-driven architectures (in particular, transactional ‘sagas‘, and ‘aggregates‘ from DDD) will also tend to move architectures away from ‘kitchen-sink’ business object definitions maintained in a single code-base into multiple discrete but overlapping schemas maintained by different code-bases, and triggered by common or related events. This will ultimately lead to an increase in the number of independently managed datastores in an organisation, all of which need management and governance across multiple environments.

For on-premise solutions, the pressure to keep the number of datastore options down, while dealing with an explosion in instances, is going to limit application data architecture choices, increase application complexity (to cope with datastore impedance mismatch), and reduce the benefits from migrating to a microservices architecture (shared datastores favor a monolithic architecture).

Cloud Changes Everything

So how does cloud fundamentally change how we deal with data management and governance? The most obvious benefit cloud brings is around the variety of data storage services available, covering all the typical use cases applications need. Capacity and provisioning is no longer an operational concern, as it is handled by the cloud provider. So data store resource requirements can now be formulated in code (e.g., in CloudFormation, Terraform, etc).

This, in principle, allows applications (microservices) to choose the most appropriate storage solution for their problem domain, and to minimize the need for long-term forward planning.

Using code to specify and provision database services also has another advantage: cloud service providers typically offer the means to tag all instantiated services with your own meta-data. So you can define and implement your own data management tagging standards, and enforce these using tools provided by the cloud provider. These can be particularly useful when integrating with established data discovery tools, which depend on reliable meta-data sources. For example, tags can be defined based on a data ontology defined by the chief data office (see my previous article on CDO).

These mechanisms can be highly automated via service catalogs (such as AWS Service Catalog or ServiceNow), which allow compliant stacks to be provisioned without requiring developers to directly access the cloud providers APIs.

Let a thousand flowers bloom

The obvious downside to letting teams select their storage needs is the likely explosion of data stores – even if they are selected from a managed service catalog. But the expectation is that each distinct store would be relatively simple – at least compared to relational stores which support many application use cases and queries in a single database.

In on-premise situations, data integration is also a real challenge – usually addressed by a myriad of ad-hoc jobs and processes whose purpose is to extract data from one system and send it to another (i.e., ETL). Usually no meta-data exists around these processes, except that afforded by proprietary ETL systems.

In best case integration scenarios, ‘glue’ data flows are implemented in enterprise service buses that generally will have some form of governance attached – but which usually has the undesirable side-effect of introducing yet another dependency for development teams which needs planning and resourcing. Ideally, teams want to be able to use ‘dumb’ pipes for messaging, and be able to self-serve their message governance, such that enterprise data governance tools can still know what data is being published/consumed, and by whom.

Cloud provides two main game-changing capabilities to manage data complexity management at scale. Specifically:

  • All resources that manage data can be tagged with appropriate meta-data – without needing to, for example, examine tables or know anything about the specifics about the data service. This can also extend to messaging services.
  • Serverless functions (e.g., AWS Lambda, Azure Functions, etc) can be used to implement ‘glue’ logic, and can themselves be tagged and managed in an automated way. Serverless functions can also be used to do more intelligent updates of data management meta-data – for example, update a specific repository when a particular service is instantiated, etc. Serverless functions can be viewed as on-demand microservices which may have their own data stores – usually provided via a managed service.

Data, Data Everywhere

By adopting a cloud-enabled microservice architecture, using datastore services provisioned by code, applying event driven architecture, leveraging serverless functions, and engaging with the chief data officer for meta-data standards, it will be possible to have an unprecedented up-to-date view of what data exists in an organization and where. It may even address static views of data in motion (through tagging queue and notification topic resources). The data would be maintained via policies and rules implemented in service catalog templates and lambda functions triggered automatically by cloud configuration changes, so it would always be current and correct.

The CDO, as well as data and enterprise architects, would be the chief consumer of this metadata – either directly or as inputs into other applications, such as data governance tools, etc.

Conclusion

The ultimate goal is to avoid data management and governance processes which rely on reactive human (IT) input to maintain high-quality data management metadata. Reliable metadata can give rise to a whole new range of capabilities for stakeholders across the enterprise, and finally take IT out of the loop for business-as-usual data management queries, freeing up valuable resources for building even more data-driven applications.

The cloudy future of data management & governance

The future of modularity is..serverless

[tl;dr As platform solutions evolve and improve, the pressure for firms to reduce costs, increase agility and be resilient to failure will drive teams to adopt modern infrastructure platform solutions, and in the process decompose and simplify monoliths, adopt microservices and ultimately pave the way to building naturally modular systems on serverless platforms.]

“Modularity” – the (de)composition of complex systems into independently composable or replaceable components without sacrificing performance, security or usability – is an architectural holy grail.

Businesses may be modular (commonly expressed through capability maps), and IT systems can be modular. IT modularity can also be described as SOA (Service Oriented Architecture), although because of many aborted attempts at (commercializing) SOA in the past, the term is no longer in fashion. Ideally, the relationship between business ‘modules’ and IT application modules should be fully aligned (assuming the business itself has a coherent underlying business architecture).

Microservices are the latest manifestation of SOA, but this is born from a fundamentally different way of thinking about how applications are developed, tested, deployed and operated – without the need for proprietary vendor software.

Serverless takes takes the microservices concept one step further, by removing the need for developers (or, indeed, operators) to worry about looking after individual servers – whether virtual or physical.

A brief history of microservices

Commercial manifestations of microservices have been around for quite a while – for example Spring Boot, or OSGi for Java – but these have very commercial roots, and implement a framework tied to a particular language. Firms may successfully implement these technologies, but they will need to have already gone through much of the microservices stone soup journey. It is not possible to ‘buy’ a microservices culture from a technology vendor.

Because microservices are intended to be independently testable and deployable components, a microservices architecture inherently rejects the notion of a common framework for implementing/supporting the microservices natures of an application. This therefore puts the onus on the infrastructure platform to provide all the capabilities needed to build and run microservices.

So, capabilities like naming, discovery, orchestration, encryption, load balancing, retries, tracing, logging, monitoring, etc which used to be handled by language-specific frameworks are now increasingly the province of the ‘platform’. This greatly reduces the need for complex, hard-to-learn frameworks, but places a lot of responsibility on the platform, which must handle these requirements in a language-neutral way.

Currently, the most popular ‘platforms’ are the major cloud providers (Azure, Google, AWS, Digital Ocean, etc), IaaS vendors (e.g., VMWare, HPE), core platform building blocks such as Kubernetes, and platform solutions such as Pivotal Cloud Foundry,  Open Shift and Mesophere. (IBM’s BlueMix/Cloud is likely to be superseded by Red Hat’s Open Shift.)

The latter solutions previously had their own underlying platform solutions (e.g., OSGi for BlueMix, Bosh for PKS), but most platform vendors have now shifted to use Kubernetes under the hood. These solutions are intended to work in multiple cloud environments or on-premise, and therefore in principle allow developers to avoid caring about whether their applications are deployed on-premise or on-cloud in an IaaS-neutral way.

Decomposing Monolithic Architectures

With the capabilities these platforms offer, developers will be incentivized to decompose their applications into logical, distributed functional components, because the marginal additional cost of maintaining/monitoring each new process is relatively low (albeit definitely not zero). This approach is naturally amenable to supporting event driven architectures, as well as more conventional RESTful and RPC architectures (such as gRPC), as running processes can be mapped naturally to APIs, services and messages.

But not all processes need to be running constantly – and indeed, many processes are ‘out-of-band’ processes, which serve as ‘glue’ to connect events that happen in one system to another system: if events are relatively infrequent (e.g., less than one every few seconds), then no resources need to be used in-between events. So provisioning long-running docker containers etc may be overkill for many of these processes – especially if the ‘state’ required by those processes can be made available in a low-latency, highly available long-running infrastructure service such as a high-performance database or cache.

Functions on Demand

Enter ‘serverless’, which aims to specify the resources required to execute a single piece of code (basically a functional monolith) on-demand in a single package – roughly the equivalent of, for example, a declarative service in OSGi. The runtime in which the code runs is not the concern of the developer in a serverless architecture. There are no VMs, containers or side-cars – only functions communicating via APIs and events.

Currently, the serverless offerings by the major cloud providers are really only intended for ‘significant’ functions which justify the separate allocation of compute, storage and network resources needed to run them. A popular use case are ‘transformational’ functions which convert binary data from one form to another – e.g., create a thumbnail image from a full image – which may temporarily require a lot of CPU or memory. In contrast, an OSGi Declarative Service, for example, could be instantiated by the runtime inside the same process/memory space as the calling service – a handy technique for validating a modular architecture without worrying about the increased failure modes of a distributed system, while allowing the system to be readily scaled out in the future.

Modular Architectures vs Distributed Architectures

Serverless functions can be viewed as ‘modules’ by another name – albeit modules that happen to require separately allocated memory, compute and storage to the calling component. While this is a natural fit for browser-based applications, it is not a great fit for monolithic applications that would benefit from modular architectures, but not necessarily benefit from distributed architectures. For legacy applications, the key architectural question is whether it is necessary or appropriate to modularize the application prior to distributing the application or migrating it to an orchestration platform such as Kubernetes, AWS ECS, etc.

As things currently stand, the most appropriate (lowest risk) migration route for complex monolithic applications is likely to be a migration of some form to one of the orchestrated platforms identified above. By allowing the platform to take care of ‘non-functional’ features (such as naming, resilience, etc), perhaps the monolith can be simplified. Over time, the monolith can then be decomposed into modular ‘microservices’ aligned by APIs or events, and perhaps eventually some functionality could decompose into true serverless functions.

Serverless and Process Ownership

Concurrently with decomposing the monolith, a (significant) subset of features – mainly those not built directly using the application code-base, or which straddle two applications – may be meaningfully moved to serverless solutions without depending on the functional decomposition of the monolith.

It’s interesting to note that such an architectural move may allow process owners to own these serverless functions, rather than relying on application owners, where often, in large enterprises, it isn’t even clear which application owner should own a piece of ‘glue’ code, or be accountable when such code breaks due to a change in a dependent system.

In particular, existing ‘glue’ code which relies on centralized enterprise service buses or equivalent would benefit massively from being migrated to a serverless architecture. This not only empowers teams that look after the processes the glue code supports, but also ensures optimal infrastructure resource allocation, as ESBs can often be heavy consumers of infrastructure resources. (Note that a centralized messaging system may still be needed, but this would be a ‘dumb pipe’, and should itself be offered as a service.)

Serverless First Architecture

Ultimately, nirvana for most application developers and businesses, is a ‘serverless-first’ architecture, where delivery velocity is only limited by the capabilities of the development team, and solutions scale both in function and in usage seamlessly without significant re-engineering. It is fair to say that serverless is a long way from achieving this nirvana (technologies like ‘AIOps‘ have a long way to go), and most teams still have to shift from monolithic to modular and distributed thinking, while still knowing when a monolith is still the most appropriate solution for a given problem.

As platform solutions improve and mature, however, and the pressure mounts on businesses whose value proposition is not in the platform engineering space to reduce costs, increase agility and be increasingly resilient to failures of all kinds, the path from monolith to orchestrated microservices to serverless (and perhaps ‘low-code’) applications seems inevitable.

The future of modularity is..serverless

Becoming a financial ‘super-power’ through emerging technologies

Recently, the Tabb Forum published an article (login needed) proposing 4 key emerging technology strategies that would enable market participants to keep pace with a trading environment that is constantly changing.

Specifically, the emerging technologies are:

  • AI for Risk Management
  • Increased focus on data and analytics
  • Accepting public cloud
  • Being open to industry standardization

It is worth noting that in the author’s view, these emerging technologies are seen as table stakes, rather than differentiators – i.e., that the market will pivot around growing use of these technologies, rather than individual firms having (temporary) advantage by using them. In the long term, this seems plausible, but does not (IMO) preclude opportunistic use cases in the short/medium term, and firms which can effectively use these technologies will basically acquire banking ‘super-powers’.

AI for Risk Management

The key idea here is that AI could be used to augment current risk management processes, and offer new insights into where market participants may be carrying risk, or provide new insights into who to trade with and what to trade.

Current risk management processes are brute force, involving complex calculations with multiple inputs, and with many outputs for different scenarios. In addition, human judgement is needed to apply various adjustments (known as XVA) to model-computed valuations to account for trade-specific context.

For AI to be used effectively for risk management, certain key technical capabilities need to be in place – specifically:

  • Data lineage, semantics and quality management
  • Feedback loops between pre-trade, trade and post-trade analytics

Many financial firms are already addressing data lineage, semantics and quality management through meeting compliance with regulations such as BCBS239. However, these capabilities need to be infused into a firm’s architecture (processes as well as technology) for it to be useful for AI use cases. Currently, the tools available are in generally not highly integrated with each other or with systems that depend on them, and human processes around these tools are still maturing.

With respect to developing machine learning models, an AI system needs to understand what outcomes happened in the past in order to make predictions or suggestions. For most traders today, such knowledge is encapsulated in complex spreadsheets that are amended by them over time as new insights are discovered by the trader. These spreadsheets are often proprietary to the trader, and over time become increasingly unmaintainable as calculations become interdependent on each other, and changing one calculation has a high chance of breaking another. This impedes a traders ability to keep their models aligned with their understanding of the markets.

Clearly another approach is needed. A key challenge is how to augment a trader’s capabilities with AI-enabled tooling, without at the same time suggesting the trader is himself/herself surplus to requirements. (This is a challenge all AI solutions face.)

One approach would require that at some level AI algorithms are biased towards individual traders decision-making and learning processes, and tying the use of such algorithms to the continued employment of the trader.

Brute-force AI learning based on all data passing through pre-trade (including market data), trade and post-trade systems is possible, but the skills in selecting critical data points for different contexts are at least as valuable as basic trading skills, and the infrastructure cost of doing this is still considerable.

Increased Focus on Data and Analytics

The key point being made by the author is that managing data should be a key strategic function, rather than being left to individual areas to manage on a per-application basis.

Again, this is tied to efforts relating to data lineage, semantics and quality. Efforts in this space can be directed to specific areas (such as risk management), but every function has growing needs for analytics that traditional warehouse and analytics based solutions cannot keep pace with – especially if, as is increasingly the case, every functional domain wishes to have their own agenda to introduce AI/machine-learning into their processes to improve customer experience and/or regulatory compliance.

As Risk Management increasingly consumes more data points from across the firm to refine risk predictions, it is not unreasonable for the Risk Management function to take leadership of the requirements and/or technology for data management for a firm’s broader needs. However, significant investment is required to make data management tools and infrastructure available as an easy-to-use service across multiple domains, which is essentially what is required. Hence, the third key emerging technology..

Accept the public cloud

The traditional way of developing technology has been to

  1. identify the requirements
  2. propose an architecture
  3. procure and provision the infrastructure
  4. develop and/or procure the software
  5. test and deploy
  6. iterate

Each of these processes take a considerable amount of time in traditional organizations. Anything learned after deploying the software and getting user feedback has to necessarily be addressed with the previously defined architecture and infrastructure – often incurring technical debt in the process.

Particularly for data and analytics use cases, this process is unsustainable. Rather than adapting applications to the infrastructure (as this approach requires), the infrastructure should be adaptable to the application, and if it is proven to be inappropriate, it must be disposed of without any concern re ‘sunk cost’ or ‘amortization’ etc.

The public cloud is the only way to viably evolve complex data and analytics architectures, to ensure infrastructure is aligned with application needs, and minimize technical debt through constantly reviewing and aligning the infrastructure with application needs.

The discovery of which data management and analytics ‘services’ need to be built and made available to users across a firm is, today, a process of learning and iteration (in the true ‘agile’ sense). Traditional solutions preclude such agility, but embracing public cloud enables it.

One point not raised in the article is around the impact of ‘serverless’ technologies. This could be a game-changer for some use cases. While serverless in general could be taken to represent the virtualization of infrastructure, serverless specifically addresses solutions where development teams do not need to manage *any* infrastructure (virtual or otherwise) – i.e., they just consume a service, and costs are directly related to usage, such that zero usage = zero costs.

‘Serverless’ is not necessarily restricted to public cloud providers – a firm’s internal IT could provide this capability. As standards mature in this space, firms should start to think about how client needs could be better met through adoption of serverless technologies, which would require a substantial rethink of the traditional software development lifecycle.

Be open-minded about industry standardization

Conversation around industry standards today is driven by blockchain/distributed ledger technology and/or the efficient processing of digital assets. Industry standardization efforts have always been a feature in capital markets, mostly driven by the need to integrate with clearing houses and exchanges – i.e., centralized services. Firms generally view their data and processing models as proprietary, and fundamentally are resistant to commoditization of these. After all, if all firms ran the same software, where would their differentiation be?

The ISDA Common Domain Model (CDM) seems to be quite different, in that it is not specifically driven by the need to integrate with a 3rd party, but rather with the need for every party to integrate with every other party – e.g, in an over-the-counter model.

Historically, the easiest way to regulate a market is to introduce a clearing house or regulated intermediary that ensure transparency to the regulators of all market activity. However, this is undesirable for products negotiated directly between trading parties or for many digital products, so some way is needed to square this circle. Irrespective of the underlying technology, only a common data model can permit both market participants and regulators to have a shared view of transactions. Blockchain/DLT may well be an enabling technology for digitally cleared assets, but other crypto-based solutions which ensure only the participants and the regulators have access to commonly defined critical data may arise.

Initially, integrations and adaptors for the CDM will need to be built with existing applications, but eventually most systems will need to natively adopt the CDM. This should eventually give rise to ‘derivatives-as-a-service’ platforms, with firms differentiating based on product innovations, and potentially major participants offering their platforms to other firms as a service.

Conclusion

Firms which can thread all four of these themes together to provide a common platform will indeed, in my view, have a major advantage over firms which do not. It is evident that with judicious use of public cloud, use of strong common data models to drive platform evolution, use of shared services across business functions for data management and analytics, and use of AI/machine learning for augmenting users work in different domains (starting with trading), all combine to yield extraordinary benefits. The big question is how quickly this will happen, and how to effectively balance investment in existing application portfolios vs new initiatives that can properly leverage these technologies, even as they continue to evolve.

Becoming a financial ‘super-power’ through emerging technologies

What I realized from studying AWS Services & APIs

[tl;dr The weakest link for firms wishing to achieve business agility is principally based around the financial and physical constraints imposed by managing datacenters and infrastructure. The business goals of agile, devops and enterprise architecture are fundamentally unachievable unless these constraints can be fully abstracted through software services.]

Background

Anybody who has grown up with technology with the PC generation (1985-2005) will have developed software with a fairly deep understanding of how the software worked from an OS/CPU, network, and storage perspective. Much of that generation would have had some formal education in the basics of computer science.

Initially, the PC generation did not have to worry about servers and infrastructure: software ran on PCs. As PCs became more networked, dedicated PCs to run ‘server’ software needed to be connected to the desktop PCs. And folks tasked with building software to run on the servers would also have to buy higher-spec PCs for server-side, install (network) operating systems, connect them to desktop PCs via LAN cables, install disk drives and databases, etc. This would all form part of the ‘waterfall’ project plan to deliver working software, and would all be rather predictable in timeframes.

As organizations added more and more business-critical, network-based software to their portfolios, organization structures were created for datacenter management, networking, infrastructure/server management, storage and database provisioning and operation, middleware management, etc, etc. A bit like the mainframe structures that preceded the PC generation, in fact.

Introducing Agile

And so we come to Agile. While Agile was principally motivated by the flexibility in GUI design offered by HTML (vs traditional GUI design) – basically allowing development teams to iterate rapidly over, and improve on, different implementations of UI – ‘Agile’ quickly became more ‘enterprise’ oriented, as planning and coordinating demand across multiple teams, both infrastructure and application development, was rapidly becoming a massive bottleneck.

It was, and is, widely recognized that these challenges are largely cultural – i.e., that if only teams understood how to collaborate and communicate, everything would be much better for everyone – all the way from the top down. And so a thriving industry exists in coaching firms how to ‘improve’ their culture – aka the ‘agile industrial machine’.

Unfortunately, it turns out there is no silver bullet: the real goal – organizational or business agility – has been elusive. Big organizations still expend vast amounts of time and resources doing small incremental change, most activity is involved in maintaining/supporting existing operations, and truly transformational activities which bring an organization’s full capabilities together for the benefit of the customer still do not succeed.

The Reality of Agile

The basic tenet behind Agile is the idea of cross-functional teams. However, it is obvious that most teams in organizations are unable to align themselves perfectly according to the demand they are receiving (i.e., the equivalent of providing a customer account manager), and even if they did, the number of participants in a typical agile ‘scrum’ or ‘scrum of scrums’ meeting would quickly exceed the consensus maximum of about 9 participants needed for a scrum to be successful.

So most agile teams resort to the only agile they know – i.e., developers, QA and maybe product owner and/or scrum-master participating in daily scrums. Every other dependency is managed as part of an overall program of work (with communication handled by a project/program manager), or through on-demand ‘tickets’ whereby teams can request a service from other teams.

The basic impact of this is that pre-planned work (resources) gets prioritized ahead of on-demand ‘tickets’ (excluding tickets relating to urgent operational issues), and so agile teams are forced to compromise the quality of their work (if they can proceed at all).

DevOps – Managing Infrastructure Dependencies

DevOps is a response to the widening communications/collaboration chasm between application development teams and infrastructure/operations teams in organizations. It recognizes that operational and infrastructural concerns are inherent characteristics of software, and software should not be designed without these concerns being first-class requirements along with product features/business requirements.

On the other hand, infrastructure/operations providers, being primarily concerned with stability, seek to offer a small number of efficient standardized services that they know they can support. Historically, infrastructure providers could only innovate and adapt as fast as hardware infrastructure could be procured, installed, supported and amortized – which is to say, innovation cycles measured in years.

In the meantime, application development teams are constantly pushing the boundaries of infrastructure – principally because most business needs can be realized in software, with sufficiently talented engineers, and those tasked with building software often assume that infrastructure can adapt as quickly.

Microservices – Managing AppDev Team to AppDev Team Dependencies

While DevOps is a response to friction in application development and infrastructure/operations engagement, microservices can be usefully seen as a response to how application development team can manage dependencies on each other.

In an ideal organization, an application development team can leverage/reuse capabilities provided by another team through their APIs, with minimum pre-planning and up-front communication. Teams would expose formal APIs with relevant documentation, and most engagement could be confined to service change requests from other teams and/or major business initiatives. Teams would not be required to test/deploy in lock-step with each other.

Such collaboration between teams would need to be formally recognized by business/product owners as part of the architecture of the platform – i.e., a degree of ‘mechanical sympathy’ is needed by those envisioning new business initiatives to know how best to leverage, and extend, software building blocks in the organization. This is best done by Product Management, who must steward the end-to-end business and data architecture of the organization or value-stream in partnership with business development and engineering.

Putting it all together

To date, most organizations have been fighting a losing battle. The desire to do agile and devops is strong, but the fundamental weakness in the chain is the ability for internal infrastructure providers and operators to move as fast as software development teams need them to – issues as much related to financial management as it is to managing physical buildings, hardware, etc.

What cloud providers are doing is creating software-level abstractions of infrastructure services, allowing the potential of agile, devops and microservices to begin to be realized in practice.

Understanding these services and abstractions is like re-learning the basic principles of Computer Science and Engineering – but through a ‘service’ lens. The same issues need to be addressed, the same technical challenges exist. Except now some aspects of those challenges no longer need to be solved by organizations (e.g., how to efficiently abstract infrastructure services at scale), and businesses can focus on the designing the infrastructure services that are matched with the needs of application developers (rather than a compromise).

Conclusion

The AWS Service Catalog and APIs is an extraordinary achievement (as is similar work by other cloud providers, although they have yet to achieve the catalog breadth that AWS has). Architects need to know and understand these service abstractions and focus on matching application needs with business needs, and can worry less about the traditional constraints infrastructure organizations have had to work with.

In many respects, the variations between these abstractions across providers will vary only in syntax and features. Ultimately (probably at least 10 years from now) all commodity services will converge, or be available through efficient ‘cross-plane’ solutions which abstract providers. So that is why I am choosing to ‘go deep’ on the AWS APIs. This is, in my opinion, the most concrete starting point to helping firms achieve ‘agile’ nirvana.

What I realized from studying AWS Services & APIs